Management of sulfonylurea treated monogenic diabetes in pregnancy: implications of placental Glibenclamide transfer

Authors: M Shepherd 1,2 AJ Brook 1,3,4 AJ Chakera 1,5 AT Hattersley 1

Running header: Management of sulfonylurea-treated monogenic diabetes in pregnancy

Affiliations

1. Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter UK.
2. Exeter NIHR Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
3. Lancashire Women and Newborn Centre, Burnley General Hospital, East Lancashire NHS Hospitals Trust, Lancashire, UK
4. University of Manchester, Manchester, UK
5. Royal Sussex County Hospital, Brighton and Sussex University Hospitals, Brighton, UK

Corresponding author:
Maggie Shepherd
L3.11, RILD
Barrack Road
Exeter, EX6 7QX
01392 408261
m.h.shepherd@exeter.ac.uk

Word count: 3935, Figures: 2

Funding: Primary funding (for salary support) from the Wellcome Trust and NIHR

There are no conflicts of interest to declare.
Abstract

HNF1A/HNF4A maturity onset diabetes of the young (MODY) and K\textsubscript{ATP} channel neonatal diabetes (NDM) are optimally treated with sulfonylureas outside pregnancy, but there is little evidence regarding the most appropriate treatment during pregnancy.

Glibenclamide has been widely used in the treatment of gestational diabetes, however recent data establishes that glibenclamide crosses the placenta, and increases risk of macrosomia and neonatal hypoglycaemia. This raises questions about its use in pregnancy. We review the available evidence and make recommendations for the management of monogenic diabetes in pregnancy.

Due to the risk of stimulating increased insulin secretion \textit{in utero}, we recommend that in women with \textit{HNF1A/ HNF4A} MODY, those with good glycaemic control on a sulfonylurea pre-conception either transfer to insulin before conception [at the risk of a short-term deterioration of glycaemic control] or continue with sulfonylurea (glibenclamide) treatment in the first trimester and transfer to insulin in the second trimester. Early delivery is needed if the fetus inherits an \textit{HNF4A} mutation from either parent as increased insulin secretion results in \textasciitilde 800g weight gain \textit{in utero}, and prolonged severe neonatal hypoglycaemia can occur post-delivery.

If the fetus inherits a K\textsubscript{ATP} neonatal diabetes mutation from their mother they have greatly reduced insulin secretion \textit{in utero} that reduces fetal growth by approximately 900g. Treating the mother with glibenclamide in the third trimester treats the affected fetus \textit{in utero} normalising fetal growth but is not desirable, especially in the high doses used in this condition, if the fetus is unaffected.

Prospective studies of pregnancy in monogenic diabetes are needed.

\textbf{What this review adds}
• Recent data shows glibenclamide crosses the placenta and its use in pregnancy is associated with increased birth weight and neonatal hypoglycaemia. This has implications for the treatment of pregnant women with monogenic diabetes whose diabetes is usually well controlled with sulfonylureas.

• Optimal management of HNF1A/HNF4A MODY in pregnancy requires excellent glycaemic control in the first trimester to minimise the risk of fetal malformations whilst avoiding the negative impact of glibenclamide on fetal weight gain in the third trimester.

• In mothers with K\textsubscript{ATP} neonatal diabetes, glibenclamide treatment in pregnancy can be beneficial if the fetus is affected, as restoration of fetal K\textsubscript{ATP} function will result in improved fetal growth.

• If the genotype of the fetus is unknown, when a parent has K\textsubscript{ATP} neonatal diabetes or HNF4A MODY, serial antenatal ultrasound assessment of fetal growth may be used as a proxy to aid management decisions.

• Management of monogenic diabetes during pregnancy could be revolutionised in the future by testing cell-free fetal DNA in the mother.
Background

The recognition of monogenic diabetes is important as it allows improvement of therapy. For several subtypes of monogenic diabetes, insulin treatment or other glucose lowering medication can be replaced by sulfonylureas. The common subtypes of maturity onset diabetes of the young (MODY) due to mutations in *HNF1A* and *HNF4A* are optimally treated with low dose sulfonylureas [1,2] and the commonest subtypes of permanent neonatal diabetes due to *KCNJ11* or *ABCC8* mutations can achieve excellent glycaemic control with high dose sulfonylureas [3-5].

How should sulfonylurea-treated monogenic diabetes be managed in pregnancy? The sulfonylurea most widely use in pregnancy is glibenclamide. Until recently it was believed that transfer across the placenta was minimal. However evidence from its use in gestational diabetes mellitus (GDM) now clearly demonstrates that glibenclamide crosses the placenta [6,7] and stimulates fetal insulin secretion, resulting in increased fetal growth and increased rates of neonatal hypoglycaemia [8-10].

In monogenic diabetes the situation is more complex as there are specific considerations in addition to concern about maternal glycaemia - these include the sulfonylurea doses required, the fetal mutation status and the desirability of exposure to sulfonylureas that differ across the specific genetic subtypes.

In this review we discuss first the evidence for use of glibenclamide in pregnancies in mothers who do not have monogenic diabetes. We then consider the three common subtypes of sulfonylurea-treated monogenic diabetes, HNF1A/4A MODY and KCNJ11/ABCC8 permanent neonatal diabetes. We outline sulfonylurea treatment outside pregnancy in these conditions and review the evidence for treatment and outcome in pregnancy. We also suggest a practical approach given the paucity of evidence available.

Literature search

A systematic literature review was undertaken using PubMed, Embase and OVID. Keywords included: monogenic diabetes, MODY, *HNF1A, HNF4A*, potassium channel (*K*_{ATP}) neonatal diabetes mellitus (*KCNJ11* and *ABCC8*), pregnancy, glibenclamide or glyburide, and gestational diabetes.
Sulfonylurea treatment in pregnancy in Type 2 diabetes and gestational diabetes – a changing landscape

Data on the use of glibenclamide in pregnancy consist of more than 9500 exposures, mainly in late pregnancy in women with gestational diabetes [11]. Glibenclamide has until recently been considered a safe drug to use in pregnancy. In vitro studies suggested that transfer across the placenta was minimal [12-14] and glibenclamide was undetectable in cord blood [15]. Early clinical studies suggested there was no significant increase in macrosomia or neonatal hypoglycaemia compared to insulin use [15-20] but these studies were limited in their power to demonstrate differences [21]. In a meta-analysis (10 studies on 471 women exposed women to sulfonylureas and biguanides in first trimester), no significant difference was found in the rate of major malformations or neonatal death among women with exposure to oral anti-diabetic agents in the first trimester compared with non-exposed women, but the meta-analysis was limited by study heterogeneity [22]. In one study of 379 pregnancies there was a significant increase in perinatal mortality (125/1000 births v 33/1000 births) and stillbirth with oral glucose lowering agents compared to those treated with insulin (91/1000 births v 33/1000 births, p<0.05) but the authors concluded that early exposure to these agents was unlikely to be deleterious [23].

Subsequent studies, using more sensitive assays, have confirmed that glibenclamide does cross the placenta, with umbilical cord plasma concentrations averaging 70% of maternal values [24]. More recent publications have demonstrated an increased risk of obstetric and neonatal complications with sulphonylurea use. Even though good glycaemic control may be maintained, pregnant women with GDM treated with glibenclamide had bigger babies than insulin-treated mothers, further increasing the risk of obstetric and neonatal complications from macrosomia [25,26]. In a meta-analysis of randomized controlled trials glibenclamide use resulted in increased in birth weight, mean difference 109g, (confidence interval 36 to 181), macrosomia, risk ratio (RR) 2.62 (1.35-5.08) and fetal hypoglycaemia, RR 2.04 (1.30 to 3.20) [10]. In a large USA cohort study of 110,000 women with GDM, newborns of women treated with glibenclamide (glyburide) were at increased risk for neonatal intensive care unit admission (RR = 1.41; 95% CI, 1.23-1.62), respiratory distress (RR = 1.63; 95% CI, 1.23-2.15), hypoglycemia (RR = 1.40; 95% CI, 1.00-1.95), birth injury (RR = 1.35; 95% CI, 1.00-1.82), and large for gestational age (RR = 1.43; 95% CI, 1.16-1.76) compared with those
treated with insulin [26]. An additional study of 2073 women also found higher odds of neonatal intensive care admission (aOR 1.46, 1.07-2.00) and birthweight >4000g (aOR=1.29 [1.03-1.64]) amongst infants born to mothers receiving glibenclamide during pregnancy [27]. The evidence now indicates that glibenclamide treatment in the third trimester exacerbates fetal hyperinsulinism *in utero* and has an additive effect on birth weight [10,26, 28]. These studies have raised concern regarding the use of glibenclamide in pregnancy [25].

There is limited experience of sulfonylurea use in the first trimester, the data that exists, suggest they are not teratogenic when used at conception or in the first trimester [22,23,29], though maternal glycated haemoglobin was independently associated with congenital anomalies [30]. However many studies group those on different oral agents together, so data for specific sulfonylureas, and in particular glibenclamide, are not available. As there are extremely limited data on other sulfonylureas, and they are not recommended in pregnancy, they are not considered in this review.

Current recommendations for the use of glibenclamide in pregnancy now reflect the concerns that have arisen from the recent studies. Glibenclamide is not recommended in GDM if insulin or metformin is available [10, 31]. In women with Type 2 diabetes it is recommended that oral antidiabetic agents (other than metformin) are discontinued before pregnancy, and insulin substituted [31]. The United Kingdom Teratology Information Service (UKTIS) advises, in the absence of evidence for teratogenicity, that glibenclamide may be considered in pregnancy where clinically indicated [11]; this could include K_{ATP} neonatal diabetes and *HNF1A / HNF4A* MODY where excellent glycaemic control can be achieved on sulfonylureas. Glibenclamide can be resumed post-delivery and during breast-feeding for those with pre-existing diabetes [32].

Current opinion suggests that glibenclamide is not teratogenic, and that it is probably safe in the first trimester. Its use in later pregnancy is a cause for concern, with an increase in adverse fetal outcomes reported, in particular fetal growth and neonatal hypoglycaemia.

What are the specific issues for sulfonylurea-treated monogenic diabetes in pregnancy?
Individuals with HNF1A MODY, HNF4A MODY and KCNJ11/ABCC8 permanent neonatal diabetes can achieve excellent control on sulfonylureas outside pregnancy, and glycaemic control may be better on sulfonylureas than insulin [1-5]. However, given that glibenclamide treatment increases the risk of macrosomia and neonatal hypoglycaemia, its use in monogenic diabetes pregnancy needs to be reconsidered.

These conditions are dominantly-inherited, so there is a 50% chance of each fetus inheriting the mutation from their affected parent. Sulfonylureas crossing the placenta may be beneficial or detrimental depending on fetal genotype, but in the majority of cases the fetal genetic status will be unknown, making management more complicated.

Treatment decisions need to consider many factors including monogenic subtype, pre-pregnancy glycaemic control and treatment, gestation, patient preference, fetal growth and fetal inheritance status (if known). Optimal glycaemic control is essential during organogenesis, and fetal growth is an important consideration with advancing gestation (Figure 1). Decisions regarding pregnancy management are, of course, individual and should be made with multidisciplinary input involving the patient, diabetologists and obstetricians.

As there are different issues to consider within the three subtypes we will discuss each separately.

Monogenic diabetes pregnancy

HNF1A MODY

1. **Optimum therapy outside pregnancy**

HNF1A MODY is optimally managed using low doses of sulfonylureas [1, 2, 33]. The mechanism for the increased glycaemic response to sulfonylureas seen in HNF1A MODY, compared with Type 2 diabetes, is thought to be due to increased pancreatic insulin secretory response to sulfonylureas and increased sensitivity to the insulin released [1].

2. **Reports of pregnancy**

 i) **Impact of fetal genotype**
The largest study of neonatal outcomes associated with monogenic diabetes found no difference in birth weight or rate of macrosomia in 134 infants inheriting HNF1A MODY mutations compared to their unaffected siblings (median birth weight 3490g) [34]. Mutations in HNF1A were not associated with an increased birth weight, with a median difference of 10g and a mean difference in the analysis of 24 discordant sibling pairs (of 3g. Neither the birth weight nor the incidence of hypoglycaemia in heterozygous HNF1A mutation carriers differed from their unaffected sibling, suggesting that fetal insulin secretion was not increased in HNF1A mutation carriers [34]. If the mother carried the mutation the birth weight was increased due to maternal hyperglycaemia but the increase was similar if the fetus was affected or unaffected. Similar findings were identified in other cohorts [35]. A single reported case of neonatal hypoglycaemia in a HNF1A mutation carrier resolved within 48 hours [34]. Consequently inheritance of an HNF1A mutation is not considered to be associated with adverse birth outcomes or obstetric morbidity.

ii) Impact of maternal therapy in pregnancy

There are no reports of the outcomes of sulfonylurea treatment in HNF1A MODY pregnancies, so the neonatal effects of sulfonylureas are not known.

3. Recommendations

There are two main treatment options (Figure 2): i) stop sulfonylureas pre-pregnancy and transfer to insulin or ii) treat with glibenclamide pre/early pregnancy and transfer to insulin in the second trimester. The second option should only be considered if pre-pregnancy HbA1c reaches local targets for glycaemic control. The advantage of excellent glycaemic control at conception and in the first trimester needs to be balanced against the lack of sufficient safety data on glibenclamide in the first trimester and the need to transfer from glibenclamide before the third trimester. Using insulin prior to conception has the advantage that this treatment can be continued throughout pregnancy and has a proven safety record at all stages of pregnancy. However optimal glycaemic control at the time of conception and in the first trimester may be harder to achieve with insulin therapy.
If a woman taking sulfonylureas presents already pregnant, the benefit of transferring to insulin in early pregnancy needs to be weighed up against the potential deterioration in glycaemic control during organogenesis. In women with good glycaemic control, HbA1c <48mmol/mol (6.5%), on a sulfonylurea the deterioration in control on discontinuing a sulfonylurea can be marked and there is case for continuing with a sulfonylurea until the end of the first trimester. Those on an alternate sulfonylurea should be transferred to an equivalent dose of glibenclamide.

If used before pregnancy and in the first trimester, glibenclamide should be discontinued before the third trimester, to avoid its trans-placental transfer. If this option is chosen, we suggest introducing a basal insulin in the second trimester and then replacing glibenclamide with bolus insulin as a second phase, aiming to achieve excellent glycaemic control well before week 26 of gestation. If glibenclamide is continued into the final trimester, doses should be as low as possible (≤5mg/day) as the impact on the fetus is likely to be dose-related.

We recommend that women with HNF1A MODY have the same fetal checks/scans as recommended for other pre-existing diabetes in pregnancy [31]. Delivery should be considered between 37 and 38th weeks in line with management of other pre-existing diabetes pregnancies [31]. Glibenclamide can be resumed post-delivery and during breast feeding, with transfer, if desired, to an alternative sulfonylurea after weaning.

HNF4A MODY

1. Optimum therapy outside pregnancy

Low dose sulfonylureas are the optimal therapy in HNF4A MODY [2].

2. Reports of pregnancy

i) Impact of fetal genotype

Inheritance of an HNF4A mutation results in a dramatic increase in birth weight. In a study of 108 individuals from HNF4A MODY families, babies inheriting an HNF4A mutation had a median birth weight 790g greater than their unaffected siblings (97th v 58th centile) [34]. There was an additional effect of maternal glycaemia; hence affected HNF4A infants born to
mothers with HNF4A MODY had a median corrected birthweight of 4840g compared to 4170g when the father was affected [34]. The prevalence of macrosomia was 64% if the HNF4A mutation was inherited from the mother and 46% if it was inherited from the father. Extreme macrosomia (birthweight >5000g) was seen in 15% of cases with an affected mother and 7% of cases with an affected father [34]. The increase in birth weight when the mother is affected is likely to be due to the effects of maternal hyperglycaemia.

The increased fetal growth associated with inheriting a fetal HNF4A mutation results in marked morbidity including neonatal hypoglycaemia, shoulder dystocia, brachial plexus birth injury, assisted delivery and emergency caesarean section [34, 36-39]. Infants born to a parent with HNF4A MODY require glucose monitoring after delivery as at least 10% of affected neonates have hypoglycaemia (blood glucose <2.5mmol/l)[34, 40]. Severe hyperinsulinaemic hypoglycaemia (blood glucose 0.8-2.5mmol/l for >24 hours) may require prolonged treatment (intravenous glucose infusion, glucagon and diazoxide / chlorthiazide) as the hypoglycaemia can persist for months or years [37,40, 41]. The increased birthweight and neonatal hypoglycaemia are a result of hyperinsulinism before and after birth [34]. The only exception is found in individuals with the p.R114W mutation which is atypical of HNF4A MODY in that it has no effect on birth weight [42].

ii) Impact of maternal therapy in pregnancy

Reports of maternal treatment during pregnancy in HNF4A MODY are scarce. In one case, insulin treatment did not prevent macrosomia or hypoglycaemia [38]. The published data is inadequate to determine if there is an effect of sulfonylurea use.

3. **Recommendations**

As there is a very high risk of macrosomia in HNF4A pregnancies if the fetus is affected, achieving excellent glycaemic control is essential.

The two main treatment options (Figure 2) are the same as those for HNF1A pregnancies as discussed above. Additional information specific to HNF4A pregnancies is detailed below.
In women with HNF4A MODY serial growth assessment should be undertaken from 28 weeks, on at least 2 weekly intervals depending on growth trajectory, in addition to routine anomaly screening at earlier gestation as advised by NICE, to detect developing macrosomia in affected fetuses. Early delivery is needed even with excellent glucose control if the fetus is genetically affected. Induction of labour or elective caesarean section, should be considered from 35-38 weeks, based on estimated fetal size on ultrasound. A paediatrician should be available at delivery. Post-delivery the infant should be monitored for neonatal hypoglycaemia and for at least 48 hours, as this may be prolonged and need continued treatment. The mother can resume glibenclamide post-delivery and during breast feeding, with transfer to an alternative sulfonylurea, if desired, once breast feeding is completed.

Management of pregnancies when the father has HNF4A MODY

A fetus inheriting the HNF4A mutation from the father has a similar risk of macrosomia and its complications (shoulder dystocia, obstructed birth etc) as with maternal inheritance (median corrected birth weight 4200g)[34]. In addition there is a high risk of fetal hypoglycaemia that may be severe and profound (see above). Therefore we recommend regular ultrasound monitoring from 28 weeks gestation when the father has HNF4A MODY. If there is evidence of fetal macrosomia on scan early delivery (37-38+6 weeks) should be considered. A paediatrician should review the child soon after birth and assess for hypoglycaemia (see recommendations above).

K_{ATP} neonatal diabetes

1. Optimum therapy outside pregnancy

The vast majority of individuals with KCNJ11 or ABCC8 permanent neonatal diabetes are successfully managed with glibenclamide with improvements in HbA1c and no increase in hypoglycaemia [3, 4, 43]. The key difference in sulfonylurea treatment in neonatal diabetes is the high dose of glibenclamide required (0.45mg/kg/day) [3] compared to the low doses in HNF1A / HNF4A MODY (<0.01mg/kg/day) [1, 2] or typical doses in Type 2 diabetes (0.06-0.2mg/kg/day) [32].

2. Reports of pregnancy
i) Impact of fetal genotype

In K_{ATP} NDM pregnancies neonatal birth weight is dependent on fetal genotype. If the fetus has inherited the genetic mutation from either the mother or father, reduced fetal insulin secretion results in low birth weight, (median 2580g at median 39 weeks’ gestation) [44-46].

ii) Impact of maternal therapy in pregnancy

Glibenclamide treatment may be beneficial or detrimental depending on whether or not the fetus is affected. Three women with $KCNJ11$ mutations who were treated with a sulfonylurea during four pregnancies have been described. The glibenclamide doses ranged from 2.8-90 mg/day [47-49]. If the fetus is unaffected then maternal use of high dose glibenclamide leads to high fetal doses, excess fetal insulin secretion, excess insulin-mediated growth and neonatal hypoglycaemia [47-49]. In contrast when the fetus is affected, trans-placental transfer of sulfonylurea restores fetal K_{ATP} function and improves fetal growth, resulting in normal birth weight (median 3010g at 38 weeks) [47]. Interestingly one of the children described has not presented with NDM in the first 18 months of life [47]. Whether this is a legacy effect of the high dose glibenclamide or a mutation effect (the E229K mutation causes transient neonatal diabetes) [47] is not clear.

Offspring (n=6) who inherited a $KCNJ11$ mutation from their affected insulin-treated mothers had a normal birth weight. In contrast, if the baby was born to a non-diabetic mother birth weight was reduced (-0.12 ± -1.81 SD for birth weight) [45]. This suggests that maternal hyperglycaemia can lead to increased fetal growth, even when there is a fetal mutation greatly reducing fetal insulin secretion.

Breastfeeding

In one mother with $KCNJ11$ neonatal diabetes taking very high doses of glibenclamide (90 mg a day), persistent postnatal exposure led to hypoglycaemia in her unaffected neonate through transfer of the drug in breast milk [48]. However the doses of glibenclamide typically used in Type 2 diabetes are considered safe for breast feeding [32],

3. Recommendations
The majority of women with K_{ATP} neonatal diabetes will already be treated with glibenclamide pre-pregnancy and excellent glycaemic control can usually be achieved (typically <48mmol/mol, 6.5%). If it is decided to continue sulfonylureas pre-conception and in the first trimester to aid glycaemic control then it is appropriate to reduce the glibenclamide dose to the lowest that maintains HbA1c ≤48mmol/mol (6.5%).

If pregnancy is planned, transfer to insulin may be considered pre-conception but this will usually result in deterioration of glycaemic control with potential consequences on fetal outcome.

The fetal genotype has a crucial role in determining whether glibenclamide therapy is recommended in K_{ATP} NDM. To determine if the fetus is affected, fetal genotyping should be offered if amniocentesis or chorionic villus sampling are being performed for another reason. Some authors have suggested that fetal genetic testing should be performed in all affected mothers, despite the risk (~1%) of miscarriage associated with invasive testing, as it would directly alter management [48,49]. If the fetal genotype is not tested directly, it may be possible to infer whether a fetus is likely to be affected by detecting reduced fetal growth by serial ultrasonography from 28 weeks gestation.

If the fetus is affected, maternal glibenclamide treatment is appropriate when the mother has K_{ATP} neonatal diabetes, as it will cross the placenta and provide *in utero* treatment of an affected fetus. This improves both fetal growth and, potentially, brain development. If the fetus is thought to be affected glibenclamide should be continued at the lowest dose required for optimal glycaemic control. If the mother had been transferred to insulin pre-conception then glibenclamide should be reintroduced at the pre-pregnancy dose. If the mutation has been inherited from an affected father, treatment with sulfonylurea during pregnancy is not possible.

If the fetus is unaffected, or there is no ultrasound evidence that it is affected, glibenclamide in the last trimester will exacerbate excessive fetal growth and neonatal hypoglycaemia and so insulin is advised. However transfer to insulin will risk deterioration in glycaemic control at this time. Transfer from glibenclamide to insulin should be rapid (<3 days), a basal bolus
regimen should be introduced as the glibenclamide is stopped and rapidly titrated to achieve good glycaemic control.

Timing of delivery should take into account the risk of continuing pregnancy in a suboptimal intrauterine growth environment versus that of prematurity from early intervention. Usually this will be between 37-38w weeks.

A fetus inheriting a K_{ATP} mutation from its mother or father will usually present with diabetes before the age of 6 months and will have raised glucose before they present with ketoacidosis. Prompt diagnosis and treatment is essential. A paediatrician should be available at delivery and the neonate’s blood glucose should be checked at birth and at least 8 hourly for a minimum of 48 hours. If the fetal genotype was not determined in pregnancy, rapid genetic testing of the fetus should be offered, as 50% of cases will be affected.

Cord blood samples can be sent to the molecular genetics laboratory at the Royal Devon and Exeter NHS Foundation Trust (www.diabetesgenes.org) and will be tested as a priority, without charge. Genetic test results in these cases should be available within a week of the arrival of the sample. The initial treatment of neonatal diabetes should usually be insulin but sulfonylurea can be started as soon as the diagnosis is confirmed.

After delivery, women with K_{ATP} neonatal diabetes can restart glibenclamide at pre-pregnancy doses. The exception to this is when doses >0.2 mg/kg/day are used and breast feeding is planned. The transfer of the drug in breast milk may be significant at higher doses [48].

Antenatal testing for fetal genetic diagnosis

Awareness of fetal genotype allows individualized obstetric care however fetal genotype is usually unknown, as at present it requires invasive testing. Due to the risks involved in chorionic villus sampling or amniocentesis, genetic testing is only usually considered antenatally if these tests are performed for another reason. Fetal growth on ultrasonography may provide a surrogate of fetal inheritance in HNF4A MODY and K_{ATP} NDM in the absence of a confirmatory antenatal genetic test, and may be useful in guiding most appropriate management. Non-invasive genetic testing of cell free fetal DNA in maternal
blood is likely to revolutionize management of monogenic diabetes pregnancies in the future [50].

Conclusions

Glibenclamide is now known to cross the placenta and its use in pregnancy can result in increased risk of large for gestational age infants, macrosomia and neonatal hypoglycaemia. The management of monogenic diabetes pregnancies that are treated with sulfonylureas outside pregnancy aims to achieve optimal glycaemic control during the first trimester whilst limiting the adverse effects of glibenclamide on fetal birthweight.

We recommend avoiding glibenclamide use during the third trimester in women with HNF1A/HNF4A MODY. In K_{ATP} NDM glibenclamide can be continued throughout pregnancy if the fetus has reduced or low/normal fetal growth or is known to have inherited a K_{ATP} channel mutation.

In the future, non-invasive pre-natal genetic testing will enable personalized management of HNF4A MODY and K_{ATP} NDM pregnancies. As data are currently lacking we advocate an international system of reporting all pregnancy management/outcomes in monogenic diabetes pregnancies to enable an evidence-based approach. The monogenic diabetes team at the Royal Devon and Exeter NHS Foundation Trust would offer to act as a repository collating this information.

Acknowledgements

MS is supported by the NIHR Exeter Clinical Research Facility. ATH is a Wellcome Trust Senior Investigator and NIHR Senior Investigator. This work was supported by the National Institute for Health Research (NIHR) Exeter Clinical Research Facility. The views expressed in this publication are those of the author(s). MS contributed to drafts and revised the manuscript. ATH and AJC contributed to drafts. AJB contributed to drafts and obstetric input. There are no conflicts of interest to declare.
References

21. Rand L, Caughey AB. Comment on ‘Comparison of glyburide and insulin for the management of gestational diabetes in a large managed care organization. AJOG. 2006; 195; 2:628-9;

36. Fajans SS, Bell GI. Macrosomia and neonatal hypoglycaemia in RW pedigree subjects with a mutation (Q268X) in the gene encoding hepatocyte nuclear factor 4α (HNF4α). Diabetologia. 2007; 50: 2600-2601.

46. Flanagan SE, Edghill EL, Gloyn AL, Ellard S, Hattersley AT. Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype. Diabetologia 2006; 49: 1190–1197

