Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks.

2.50
Hdl Handle:
http://hdl.handle.net/11287/620588
Title:
Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks.
Authors:
Kim, Daniel; MacKinnon, T
Abstract:
To identify the extent to which transfer learning from deep convolutional neural networks (CNNs), pre-trained on non-medical images, can be used for automated fracture detection on plain radiographs.
Citation:
Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. 2017 Clin Radiol
Publisher:
Elsevier
Journal:
Clinical radiology
Issue Date:
18-Dec-2017
URI:
http://hdl.handle.net/11287/620588
DOI:
10.1016/j.crad.2017.11.015
PubMed ID:
29269036
Type:
Journal Article
Language:
en
ISSN:
1365-229X
Appears in Collections:
Radiology Department; 2017 RD&E publications

Full metadata record

DC FieldValue Language
dc.contributor.authorKim, Danielen
dc.contributor.authorMacKinnon, Ten
dc.date.accessioned2017-12-29T11:25:40Z-
dc.date.available2017-12-29T11:25:40Z-
dc.date.issued2017-12-18-
dc.identifier.citationArtificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. 2017 Clin Radiolen
dc.identifier.issn1365-229X-
dc.identifier.pmid29269036-
dc.identifier.doi10.1016/j.crad.2017.11.015-
dc.identifier.urihttp://hdl.handle.net/11287/620588-
dc.description.abstractTo identify the extent to which transfer learning from deep convolutional neural networks (CNNs), pre-trained on non-medical images, can be used for automated fracture detection on plain radiographs.en
dc.language.isoenen
dc.publisherElsevieren
dc.rightsArchived with thanks to Clinical radiologyen
dc.subjectWessex Classification Subject Headings::Radiologyen
dc.titleArtificial intelligence in fracture detection: transfer learning from deep convolutional neural networks.en
dc.typeJournal Articleen
dc.identifier.journalClinical radiologyen
dc.type.versionIn press (epub ahead of print)en
All Items in RD&E Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.